739 research outputs found

    Turbo decoder VLSI implementations for multi-standards wireless communication systems

    Get PDF

    Mouse model of DNCB-induced atopic dermatitis

    Get PDF

    Immediate Laparoscopic Nontransvesical Repair without Omental Interposition for Vesicovaginal Fistula Developing after Total Abdominal Hysterectomy

    Get PDF
    Immediate laparoscopic nontransvesical repair for vesicovaginal fistula may be an effective and feasible alternative to traditional repair in select patients

    Tetrahydroabietic Acid, a Reduced Abietic Acid, Inhibits the Production of Inflammatory Mediators in RAW264.7 Macrophages Activated with Lipopolysaccharide

    Get PDF
    Abietic acid (AA), the main component of the rosin fraction of oleoresin synthesized by conifer species, has been reported to have anti-inflammatory effects. AA is a weak contact allergen; however, compounds resulting from its oxidation by air elicit stronger allergic response. Hydrogenation of the conjugated double bonds of AA, as in tetrahydroabietic acid (THAA), decreases its susceptibility to air oxidation and would thus reduce the allergenicity of AA. The aim of this study was to investigate whether THAA could exert anti-inflammatory effects to the same extent as AA in RAW264.7 macrophages activated with the endotoxin lipopolysaccharide (LPS). THAA and AA inhibited the production of nitric oxide (NO) and prostaglandin E2 by suppressing the expression of inducible NO synthase and cyclooxygenase-2, respectively, in LPS-activated RAW264.7 macrophages. They also inhibited the LPS-induced production of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Both THAA and AA prevented the LPS-induced nuclear translocation of the nuclear factor-κB/p65 subunit, suggesting that THAA may inhibit the production of pro-inflammatory mediators through the same mechanism as AA. In comparison, the anti-inflammatory effects of THAA and AA were almost identical, indicating that THAA retains the anti-inflammatory activity of AA at least in LPS-activated RAW264.7 macrophages

    Neural Correlates of Transient Mal de Debarquement Syndrome: Activation of Prefrontal and Deactivation of Cerebellar Networks Correlate With Neuropsychological Assessment

    Get PDF
    Background: Mal de debarquement syndrome (MdDS) is characterized by a subjective perception of self-motion after exposure to passive motion, mostly after sea travel. A transient form of MdDS (t-MdDS) is common in healthy individuals without pathophysiological certainty. In the present cross-sectional study, the possible neuropsychiatric and functional neuroimaging changes in local fishermen with t-MdDS were evaluated. Methods: The present study included 28 fishermen from Buan County in South Korea; 15 (15/28, 53.6%) participants experienced t-MdDS for 1–6 h, and 13 were asymptomatic (13/28, 46.4%). Vestibular function tests were performed using video-oculography, the video head impulse test, and ocular and cervical vestibular-evoked myogenic potentials. Visuospatial function was also assessed by the Corsi block test. Brain imaging comprised structural MRI, resting-state functional MRI, and [18F]FDG PET scans. Results: The results of vestibular function tests did not differ between the fishermen with and those without t-MdDS. However, participants with t-MdDS showed better performance in visuospatial memory function than those without t-MdDS (6.40 vs. 5.31, p-value = 0.016) as determined by the Corsi block test. Structural brain MRIs were normal in both groups. [18F]FDG PET showed a relative hypermetabolism in the bilateral occipital and prefrontal cortices and hypometabolism in the vestibulocerebellum (nodulus and uvula) in participants with t-MdDS compared to those without t-MdDS. Resting-state functional connectivities were significantly decreased between the vestibular regions of the flocculus, superior temporal gyrus, and parietal operculum and the visual association areas of the middle occipital gyrus, fusiform gyrus, and cuneus in participants with t-MdDS. Analysis of functional connectivity of the significant regions in the PET scans revealed decreased connectivity between the prefrontal cortex and visual processing areas in the t-MdDS group. Conclusion: Increased visuospatial memory, altered metabolism in the prefrontal cortex, visual cognition cortices, and the vestibulocerebellum, and decreased functional connectivity between these two functional areas might indicate reductions in the integration of vestibular input and enhancement of visuospatial attention in subjects with t-MdDS. Current functional neuroimaging similarities from transient MdDS via chronic MdDS to functional dizziness and anxiety disorders suggest a shared mechanism of enhanced self-awareness as a kind of continuum or as overlap disorders

    Bispectral index and their relation with consciousness of the patients who receive desflurane or sevoflurane anesthesia during wake-up test for spinal surgery for correction

    Get PDF
    Background: Wake-up tests may be necessary during surgery for kypho-scoliosis to ensure that spinal function remains intact. It is difficult to predict the time when patients can respond to a verbal command. We evaluated the effectiveness of the bispectral index (BIS) and its relation to patients' levels of consciousness in wake-up tests during desflurane and sevoflurane anesthesia. Methods: Eighteen patients each were enrolled in the desflurane and sevoflurane groups for spinal correction surgery. We measured BIS values, blood pressure, heart rate, and consciousness state and time, at the points when patients responded during the wake-up test. Results: The BIS values when patients made fists upon a verbal command (T3) were 86.7 ± 7.5 for desflurane and 90.3 ± 5.4 for sevoflurane. Patients in the desflurane group had significantly shorter wake up delays than those in the sevoflurane group (6.9 ± 1.8 min vs. 11.8 ± 3.6 min). However, there was no difference between the groups in the time between the response to a verbal command and the time when a patient moved their toes in response to verbal commands. No recall of the wake-up tests occurred in either group. Conclusions: The values obtained using the BIS index could to some extent predict the time of a patient's and would be informative during desflurane and sevoflurane anesthesia. Moreover, desflurane permitted faster responses to verbal commands than sevoflurane, and allowed the wake-up test to be performed sooner

    Genomic profile of metastatic breast cancer patient-derived xenografts established using percutaneous biopsy.

    Get PDF
    BACKGROUND: Metastatic breast cancer (mBC) is a complex and life-threatening disease and although it is difficult to cure, patients can benefit from sequential anticancer treatment, including endocrine therapy, targeted therapy and cytotoxic chemotherapy. The patient-derived xenograft (PDX) model is suggested as a practical tool to predict the clinical outcome of this disease as well as to screen novel drugs. This study aimed to establish PDX models in Korean patients and analyze their genomic profiles and utility for translational research. METHODS: Percutaneous core needle biopsy or punch biopsy samples were used for xenotransplantation. Whole exome sequencing and transcriptome analysis were performed to assess the genomic and RNA expression profiles, respectively. Copy number variation and mutational burden were analyzed and compared with other metastatic breast cancer genomic results. Mutational signatures were also analyzed. The antitumor effect of an ATR inhibitor was tested in the relevant PDX model. RESULTS: Of the 151 cases studied, 40 (26%) PDX models were established. Notably, the take rate of all subtypes, including the hormone receptor-positive (HR +) subtype, exceeded 20%. The PDX model had genomic fidelity and copy number variation that represented the pattern of its donor sample. TP53, PIK3CA, ESR1, and GATA3 mutations were frequently found in our samples, with TP53 being the most frequently mutated, and the somatic mutations in these genes strengthened their frequency in the PDX model. The ESR1 mutation, CCND1 amplification, and the APOBEC signature were significant features in our HR + HER2- PDX model. Fulvestrant in combination with palbociclib showed a partial response to the relevant patient\u27s tumor harboring the ESR1 mutation, and CCND1 amplification was found in the PDX model. AZD6738, an ATR inhibitor, delayed tumor growth in a relevant PDX model. CONCLUSIONS: Our PDX model was established using core needle biopsy samples from primary and metastatic tissues. Genomic profiles of the samples reflected their original tissue characteristics and could be used for the interpretation of clinical outcomes

    ENDEAVOUR: A Scalable SDN Architecture For Real-World IXPs.

    Get PDF
    Innovation in interdomain routing has remained stagnant for over a decade. Recently, IXPs have emerged as economically-advantageous interconnection points for reducing path latencies and exchanging ever increasing traffic volumes among, possibly, hundreds of networks. Given their far-reaching implications on interdomain routing, IXPs are the ideal place to foster network innovation and extend the benefits of SDN to the interdomain level. In this paper, we present, evaluate, and demonstrate EN- DEAVOUR, an SDN platform for IXPs. ENDEAVOUR can be deployed on a multi-hop IXP fabric, supports a large number of use cases, and is highly-scalable while avoiding broadcast storms. Our evaluation with real data from one of the largest IXPs, demonstrates the benefits and scalability of our solution: ENDEAVOUR requires around 70% fewer rules than alternative SDN solutions thanks to our rule partitioning mechanism. In addition, by providing an open source solution, we invite ev- eryone from the community to experiment (and improve) our implementation as well as adapt it to new use cases.European Union’s Horizon 2020 research and innovation programme under the ENDEAVOUR project (grant agreement 644960)
    corecore